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Fluid flow in the channels of plate-type heat exchangers is modeled by a two-dimensional flow in plane 

channels with distributed resistance to fluid flow determined by the nature of the corrugation of the plates. 

Such an approach permits one to find the distribution of pressure and fluid flow velocity over the plate field, 

and then, with the use of the semiempirical dependence of heat transfer coefficient on pressure gradient, to 

determine the distribution and mean value of the heat transfer coefficient on the field of the heat exchanger 

plate. 

The most important problem with respect to increasing the national income in industry is a reduction in 

the metal content and energy consumption of articles, as well as bringing new energy-saving production processes 

to a commercial level. In the field of heat exchanging equipment the problem amounts to a further decrease in of 

the overall size and specific metal content of appraratus per unit of thermal performance. 
To solve the above problem, it is necessary to find new, more efficient engineering solutions and embody 

them in the designs of plate-type heat exchangers. This is the aim of the present study. 

The price of one industrial plate heat exchanger runs into several tens of millions of rubles, and therefore 

it would be too costly to carry out experiments on such apparatus for determining efficient heat transfer surfaces; 

this being so, interest has recently increased in the development of scientifically justified methods of investigation 

and calculation of the elements of heat-exchanging equipment. 
The construction and investigation of a model of convective heat transfer in the channels of screen-flow-type 

heat exchangers composed of corrugated plates (Fig. 1) involve great difficulties because of the complex spatial 

motion of fluid. The solution of the differential equations of transfer for turbulent flow, most interesting from the 

practical standpoint, is not always possible, even for straight channels [1 ]. Therefore, in practice the pressure drop 
for the flow of fluid with constant properties in the channel of a heat exchanger is usually determined by the 

Darcy-Weisbach formula 

L pV 2 (1) 
AP = ~ deq 2 

An expression for ~ in flow through channels of plate-type heat exchangers was obtained in [3-5] 

= 0.34 exp (1.51 tan ~o) 
ReO.XS-o.o6 tan ~, [1.24 exp ( -  0.37 tan ~o )/3 ], (2) 

where/~ is a parameter determined by the geometric dimensions of a crimp, its height h, and by the spacing between 

the crests of neighboring crimps l. 
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Fig. 1. The plate of a commercially produced heat exchanger of type 0.3E. 

Relation (1) is also valid for flow in porous media [6 ]; moreover, thanks to the cellular structure of the 

channel, the flow between corrugated plates can be considered as two-dimensional in a porous medium located 

between smooth and parallel plates, i,e., as a nonlinear analog of the Hele-Shaw cell in the form of a plate heat 

exchanger [7, 8 ]. 

Relation (1) can be rewritten in the form 

d P  
d L  - - k f  (~r) , (3) 

where k depends only on the geometric dimensions of the channel, and f(V) is usually a power function of velocity 

[21. 
To determine the pressure gradient for two-dimensional motion in a porous medium we may write 

grad P = - kij f j  (V). (4) 

Here kij is the tensor quantity which characterizes the resistance of the medium; physically it is similar to the 

reciprocal of the permeability tensor in the theory of filtration; V is the seepage velocity of the fluid. 

From Fig. 1 and relation (2) it is seen that in the heat exchanger channel there are two distinct, mutually 

perpendicular directions which are extremal for the resistance coefficients. Therefore the medium in which fluid 

flows can be regarded as being orthotropic. 

Introducing a coordinate system with the directions of axes along the principal axes of the tensor ki] (Fig. 

2), we rewrite relation (4) in the form 

grad P = - ik  x sign (Vx) l Vxi  sx - jky sign (Vy) I Vyt sy , (5) 

where Sx, sy = s(fl, x, y); kx, ky are the resistance coefficients along and across the channel. 

Using the dimensionless variables and parameters 

2 /9 deq V x p deq Vy p deq = x 
1 7 =  Pdeq R v  x =  RVy = A =  Z ~ , rl = y 

2 ' It ' It ' L ' ' 
It 

we can rewrite projections (5) onto the coordinate axes and the continuity equation in the form 

OH s 
= _  invx I x ,  A - - ~  x x sign (RVx) (6) 

A OH - - ~  = - Xy sign (RVy) ] Rvy]  sy ,  (7) 

ORVx ~ o 
- - W  + o,7 = " 

(8) 
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Fig. 3. Determination of the angle between the seepage velocity and crimps. 

The boundary conditions for this system of equations are the conditions of impermeability on the side walls 

of the channel and constant pressure gradients at the inlet and exit of it prescribed by the constant flow rate of 

fluid (Fig. 2): 

1 OH 2 / S x  

x x OZ 
1 01-1) 2/sy 

+ ~-7- ~ -  = R e  2, 

0 < r] <r]l  ; 
Z0 

0_<X--- T , 
~/2 < t/ < ~/o ; 

(9) 

1 OH 
7x -a2- 

2/s x 1 OH 1 2/Sy 
+ = o ,  

<r] <z] l ;  Z0 < < 
-5  - z  - z 0  , 

~/2 < ~/ < r/o ; 

(10) 

OH {ZZ=0;  (11) 
- O, ,/1 _ r/_< r/2, Xo, 

where ~/1 = yl/L; r/2 = y2/L; ~0 = 1; 20 = H/L.  
These conditions are written for the "left-hand" channel. They have a similar form also for the "right-hand" 

channel. 
Differentiating Eqs. (6) and (7) with respect to the corresponding coordinate, we obtain velocity derivatives 

whose substitution into the continuity equation yields an expression which describes the pressure field in the 

heat-exchanger channel 

tCy SyRX_.-15y 021-I s - 1  021-1 (12) 0 2 + Xx Sx RVxX 2 -- O ,  
'Z Orl 

OH) -1/s  x ( OH 
R V x = - s i g n  ~ -  x x A ~ -  

l / sx  (13) 

( 0 / - / ) - 1 / s .  ( {  OH 1/Sy (14) R v y = - s i g n  -~- Xy Y A ~ -  

The system of equations (9)-(14) can be integrated numerically by the time-dependent technique. For this purpose, 

Eq. (12) is formulated in a nonstationary form, i.e., its left-hand side is equated with the  derivative O/-//0•, where 



is some dimensionless time. The spatial derivatives in Eqs. (12)-(14) are approximated by central differences on 

a computational grid (Fig. 2). Thus, a system of ordinary differential equations is obtained that  describes the 

pressures IIi,y at each point of the division (i, j), which are subsequently integrated by the Gear method up to 

complete development of a steady state. In doing so, we ensure agreement with the condition of constant flow rate 

in each cross section on the grid. 

As a result of integration we obtain the distribution of the dimensionless pressure and velocity components 

over the field of the heat exchanger plate. 

Using these data and  the semiempirical dependence of the heat transfer coefficient on the resistance 

coefficient [9 ] 

0.14 ;l Re Pr ~ (15) 
t~ 

deq{ In (Re vr~/760) + 2 [Pr + In (1 + 5 Pr)] /V~} ' 

(where 0 is the pressure gradient function, Pr is the Prandtl number) we obtain the distribution of the local 

coefficients over the field of the plate. But first we must determine ~ for any direction of the seepage velocity in 

the channel between the plates (Fig. 3). 

Relation (2) was obtained on the condition that V is directed along the plate and that in such a case 7, is 

the angle of inclination of the crimps to the Velocity direction. From Fig. 3 it is seen that when the velocity changes 

direction by Jr/2, the angle of inclination of the crimps to the flow velocity undergoes a change by Jr/2-to. This 

makes it possible to determine the angle of inclination of the crimps to the fluid flow ~* at the known components 

Vx and Vy, i.e., ~ in Eq. (15) will be determined for the angle 

7, =~o+  1 -  . arctan ~ 

Under identical conditions for heat carriers, the velocity distribution in adjacent channels is symmetric 

about the principal axis of the plate, i.e., the heat transfer coefficients will also be symmetrical 

I v i j I  = I v ' , v + , - i j I  - "  = (17) 

where ' is for the "left-hand" channel and " is for the "right-hand" channel, i -- 1, 2 . . . . .  N, j-- 1, 2 . . . . .  M. 

In this case the heat conduction coefficients are defined as 

Ki,  j = ~ + + - -  , 
a N +  1 - i , j  

where ~pl = 10-3 m and Apl = 60 W/(m. K) are the thickness and the thermal conductivity of the plate, respectively. 

The adequacy of the model was checked by comparing the calculated and experimental data obtained on 

standard heat exchangers with plates of type 0.6 [2, 10 ]: T = 60~ over the entire field, L = 1.1 m ,  H = 0 .55  m, l = 

18 ram, h -- 4 mm. Experiments were carried out for a fluid with the parameters c = 4.174 kJ / (kg-K) ,  

ff = 0.4997.10 -3 Pa-sec, Aft = 0.648 W(m. K). Comparison shows that the mean relative errors in the determination 

of the pressure difference and mean heat conduction coefficient do not exceed 15% (Fig. 4). 
Similar investigations were carried out for typical heat exchangers with plates of type R 0.6-2 [10 ] where 

the inclination angle of crimps on distributing portions can be regarded equal to ~o 1 -- 15 ~ and over the main field 

to T = 40~ (see Fig. 2). In this case, on the interfaces between the zones with different values of 7' the following 

conjugation conditions should be fulfilled: 

1 ( 0 / / )  1 ( 0 / 7 )  (19) 
/eel Ar]I - ~  1 -- ryE Ar/~ -~- 2' 

where At/1 and At/2 are the steps of the grid over ~/in zones 1 and 2 (Fig. 2). 
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Fig. 4. Comparison of the Calculated values of pressure drop (a) and mean 

heat conduction coefficient (b) with experimental results (points); solid line; 

perfect coincidence; dashed line, boundaries of the 15% deviation zone AP, 
Pa; h', W/(m 2" K). 
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Fig. 5. Distribution of the velocity modulus (a, b, c) and of the components 

of Vy (solid lines), Vx (dashed lines) (d, e, f) of the heat exchanger R 0.6-2 

across the channel: a, d) Q = 0.278.10 -a ma/sec; b, e) 0.167.10-a; c, f) 

0.956.10-3; distance from the start of the plate: 1) 4cm; 2) 8; 3) 12; 4) 16; 

5) 20; 6) 55; 7) 28 cm. V, m/sec; H, m. 

Due to the fact that the resistance of corrugation to the fluid flow along the plate is much smaller than the 

resistance accross the plate (Kx l / lCy  1 ~ 80, ICx2/lr 2 ~ 6), the fluid has no time to be distributed uniformly over the 

cross section of the channel, and the fluid velocity from the side of the collectors turns out to be higher for any 

cross section (Fig. 5). Due to such a distribution of the velocity, the distribution of the heat conduction coefficients 

is very nonuniform over the plate width (Fig. 6), and this leads to elongated peak-like distributions of heat 

conduction coefficients across the plate. 
On the distributing portions of flow, the velocity modulus is somewhat higher than on the main field, since 

the cross section there is smaller: But the value of V x is larger, i.e., distribution of fluid flow across the channel 

takes place. Then Vx decreases to 0, and the flow becomes virtually rectilinear (Fig. 5). Owing to such a distribution 

of velocity, the heat transfer and heat conduction coefficients on distributing portions are higher than on the main 
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Fig. 7. Distr ibut ion of the  hea t  t r ans fe r  coefficient c~ and  heat  conduct ion  

coefficient K for  the  plate 1/ 0.6-2 (K, calculated value; K, exper imenta l  

value).  

field (Fig. 7), with the  dis t r ibut ion of K being symmetr ic  with respect  to the principal axis of the  plate due to the 

symmet r i c  dis t r ibut ion of a in adjacent  channels .  

T h e  resul ts  show tha t  in R 0.6-2 heat  exchangers  the corrugat ion  of  plates is not  good,  at  least  on  the  

dis t r ibut ing port ions.  

T h e  effect of  changes  in the cor rugated  field of plates on heat  t ransfer  was invest igated numer ica l ly  for 

0 .6- type  plates and  their  modificat ions.  

Let  us cons ider  hea t  t r ans fe r  at  flow rates  in adjacent  channels  Q = 0.137 �9 10 -2 m3 / sec  for  five versions of 

the cor ruga ted  field: a) 7'1 = 7"2 -- 60~ Ii = 12 = 18 mm, hi = h2 = 4 mm; b) 7'1 = 60 ~ 9o2 = 70 ~ ll = 12 = 18 ram, 

hi = h2 -- 4 ram; c) 7'1 = 70~ 7"2 -- 65~ ll = 36, /2 = 18 mm; hi = h2 -- 4 ram; d) 7"1 = 7"2 -- 600,  ll = /2 = 18 ram, 

h 1 = h 2 = 3 ram; e) 7'1 -- 70 ~ 7'2 = 65~ ll = 3 6 , / 2  = 18 mm, hi = hE -- 3 mm. 
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Fig. 9. Distribution of the heat transfer and heat conduction coefficients 

across the channel for versions a), b), c), and d) (a-d, respectively); distance 

along the axis y from the start of the plate: 1) 4 cm; 2) 8; 3) 12; 4) 16; 5) 

24; 6) 55 cm. 

The pressure distribution along the channel is determined by the nature of corrugation of the plates. In 

cases (a) and (d) it is almost linear, since the corrugation of the plates is homogeneous. 

In other cases, at the boundaries of the distributing portions the inclination angle of crimps, as well as the 

resistance to flow and grad P, change jumpwise (Fig. 8). 
A similar distribution is also observed for the heat transfer coefficients on the field of the plate. In places 

where the value of grad P is high, they are maximal (Fig. 9). On the distributing portions the profile of a is 

asymmetrical since the velocity profile has not formed as yet. This is more pronounced for versions (a) and (d) 

(Figs. 9 and 10). In case (a), Xy2 > tCyl, whereas ICyl/ tCxl ,~ 0.1 and tCy2/tCx2 = 0.01. This promotes a more uniform 

distribution of fluid over the channel cross section. Therefore, a and K at the inlet and exit are distributed more 

uniformly, whereas on the main field their values are higher than on the distributing portions (Fig. 11). 
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Fig. 11. Distribution of the heat transfer coefficient a and heat conduction 

coefficient K over the field of the plate for version b). 

The  mean heat conduction coefficient K for version (b) is 41.2% higher than for the initial version (a). 

But here AP increases by 243%. In case (b) K grows by 24.3% as compared with (a) and ALP grows by 40%. In 

cases (d) and (e) K increases by a smaller value than the mean relative error, while AP grows appreciably, and 

one can say that the change in the corrugated field is most advantageous for version (c). 

For thermal t reatment  of high-viscosity fluids with a strong temperature dependence of their  rheological 

properties, a plate with curvilinear S-like crimps was developed [11-13 ] (Fig. 12). To determine the efficiency of 

these plates in treating fluids with constant properties, a number of numerical and full-scale experiments were 

carried out for  such fluids. 

Investigations were carried out with plates 0.3E: L = 1.1 m; H = 0.25 m; h = 4 mm; R = 0.7 m; the spacing 

between the adjacent crests along the central axis was lo = 20 mm for the following versions of corrugation: (1) a 

plate of "crow's feet"- type with ~o = 60~ (2) a plate with S-like crimps and a constant angle of inclination along the 

central axis ~o o = 60~ (3) S-crimps with the change in the inclination angle along the central axis from 45 to 70~ 

(4) S-crimps with the change in ~o 0 from 45 to 75~ 5) S-crimps with ~o 0 changing from 50 to 70 ~ The  fluid properties 



Fig. 12. Experimental plate with S-like crimps. 
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Fig. 13. Distribution of the resistance coefficient: a) along the central axis of 

the channel; b) across the channel at y -- L/2; 1, 2, 3, 4) distribution of icy; 

5, 6, 7, 8) Xx; 1, 5) for S-like crimps with inclination angle along the axis 

equal to 50-70~ 2, 7) S-like crimps with inclination angle along the axis equal 

to 60~ 3, 8) 45-75~ 4, 6) 45-70 ~ L, m. 

remained as before, whereas the flow rate was equal to Q -- S. 10 -4 m3/sec. The distribution of Xx and n:y for the 

versions selected is shown in Fig. 13. 

Since ~c x and ~Cy in channels with S-like corrugation of plates are functions of the coordinates, Eq. (12) 

assumes the form 

OZ 2 +Rv  x - -~ +to xs x~v x A - - + R V y Y  ~ =0 (12') Or]2 Or] ' 

where it is taken into account that the coefficients ~c depend on ~o more strongly than the exponents s. The boundary 

conditions remained as before, as well as the solution technique. 

In case (1) the resistance to fluid flow along the channel is somewhat higher than that across the channel, 

while the length of the channel is large as compared with its width. This promotes the establishment of a uniform 
velocity profile (Fig. 14). 

In channels with plates of version (2) the distribution of ~c x and toy across the channel is nonuniform: ~Cy is 

maximum at the center and decreases toward the periphery of the channel; ~Cx, conversely. This means that around 

the periphery the resistance to fluid motion along the channel will be smaller while the fluid flow will be larger 

(Fig. 14). In view of this, the transverse velocity component Vx over the distributing portion is somewhat higher in 

the second case than in the first, and a greater portion of fluid is directed here to the side walls. 

While in cases (1) and (2) the distribution of velocities on the plate is symmetric about the middle line, 

there is no such symmetry for versions (3) and (4). At the inlet, in the case of small inclination angles of crimps, 

*:x > > Xy, and as a result the fluid has no time to be distributed uniformly over the width of the inlet section; 
therefore Vy is higher near the collector hole within the distributing portion (Fig. 15). Hereafter the fluid velocity 
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Fig. 14. Distribution of fluid velocity components across the channel: a) for 
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Fig. 15. Distribution of the fluid velocity components across the channel for 

S-like plates with inclination angles of crimps equal to 45-70~ a) first half of 

the plate; 1) y = 0.025 m; 2)0.05; 3)0.075; 4) 0.1 m; b) second half of the 

plate; 1) L-y -- 0.025 m; 2) 0.05; 3) 0.075; 4) 0.1; 5) 0.55 m. 
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Fig. 16. Distribution of pressure drop along the central axis of the channel: 
1) for a plate with S-like crimps and ~o = 70-75~ 2) "crow's feet"; 3) ?9 = 
45-75~ 4) 50-70~ 5) 45-70 ~ 

distribution in the channel is similar to that in the 2nd case, as the resistance to motion at the periphery is smaller 

than at the center. However, at the exit, due to the fact that ry > > Xx (large inclination angles), the transverse 

velocity component increases (Fig. 15). 

The pressure distribution at constant flow rate is determined in the main by the character of distribution 

of the resistance coefficients. In the case of uniform distribution, the pressure drop along the channel is almost 

linear (Fig. 16). In case (2) the pressure gradient is smaller than in (1), since the resistance to motion around the 

periphery of the channel is smaller. For versions (3), (4), and (5) AP is much smaller than in the former two 
versions, since here the inclination angles of crimps toward the axis is smaller, i.e., icy is also smaller. But with 

10 



a b c d 
ct.lo _3 ~'1o-3 j ' ~  ~x. lo -J 

-9 , ~  ~x," ~ q~ /-%.. 9 0 11(~ 

To 

7 ~ 7 5 1 2 

2 I t i t . I  I 

K.10_3 ~t25 117.517 O.1ZS 02~0 U.lZg O.ZSO O 3 D.125 14 
K.10 -3 K'lO -3 K-lO- 

g . 7 ~ . . ~  10 

E 6 7  ~ ~ ~  

G 3 3 

2 

2 Z i r 15~ 7 
0.125 ~ZSO O 9.125 0.2:;0 O 0.125" 0.250 0 9.125 H 
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= 0.025 m; 2) 0.05; 3) 0.075; 4) 0.I; 5) 0.19; 6) 0.55; 7) 0.81; 8) 1; 9) 1.025; 

10) 1.05; 11) 1.075 m. 

TABLE 1. Comparison of the Pressure Drop AP and Mean Heat Conduction Coefficient K for Plates of Different 
Types 

No. 

1 

Type of plate 

"Crow's -feet" 

S-crimps 

go =60 ~ 

~oo = 45-70 ~ 

go = 45-75 ~ 

~o0 = 50-70 ~ 

AP. 10 -3 Pa 

0.23 

0.124 

0.196 

0.615 

0.221 

Deviation of AP 

from No. 1, % 
I 
I 

0 

-46 

-15 

167 

- 4  

_K,W/(m2.K) 

2500 

2960 

2900 

3460 

3250 

Deviation of K 

from No. 1, % 

0 

18 

16 

36 

30 

increasing distance along the channel the angles of inclination of crimps toward the axis increase, the absolute 

value of AP grows, and this leads to a sharp increase in the pressure drop at the exit of the channel where the flow 

region is almost blocked by the crimps with inclination angles close to 750 . 

The distributions of the heat transfer coefficients also behave in conformity with the pressure gradient. In 

case (1) a is maximal over the distributing portions where the velocity is maximum in absolute magnitude (Fig. 
17). In versions (3)-(5) the heat transfer coefficient first falls at the inlet, because of the decrease in the velocity 
modulus, and then grows with ~o 0. 

To the distribution of a there also corresponds the distribution of the heat conduction coefficients K (Fig. 

18). For case (1), when the distributions of Xx, Ky, and V are uniform, we obtain a rather uniform distribution of 

a and K. In cases (3)-(5), at the beginning of the flow, when the inclination angles of crimps are still insignificant, 
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Fig. 18. Distr ibut ion of the heat conduction coefficient along the central axis 

of the plate: l )  for a plate of the crow's feet type; 2) for a plate with ~o 0 = 

45-70~ 3) for a plate with ~o 0 = 50-70~ 4) for a plate with go = 45-750. 

Fig. 19. Distr ibut ion of the heat conduction coefficient over the field of a plate 

with S-like crimps with change in inclination angle on the central axis ~o 0 from 

45 to 70 ~ . 

the distribution of a and K is almost uniform (Fig. 17), although the velocity increases, but Xy decreases, toward 

the periphery, and this leads to the equilization of the distribution of the heat transfer coefficient. Hereafter K 

grows in accord with a (Fig. 19). 

From Table 1 it is seen that for plates with S-like crimps K is higher at smaller energy expenditures, except 
for the fourth case where the pressure drop increases sharply at the exit due to the large inclination angles of 

crimps. From this we can conclude that plates with S-like crimps are more efficient. 

The qualitative results agree with the data of the experiments with water. 

Because of the complexity of fabricating a stamped plate, we selected a smooth sheet of 0.3E-type plate 

and soldered on it wires in the form of straight and S-like crimps (see Fig. 12). 

Comparison of the heat flux obtained on the stamped plate with that obtained on plates with soldered 

straight crimps showed that the former is 28 % more efficient. 

The experiments on plates depicted in Fig. 12 show that at identical pressure differences the mean heat 

conduction coefficient on a plate with S-like crimps is 30 % higher than for a plate with soldered straight crimps. 

N O T A T I O N  

c, heat capacity coefficient, J / (kg.  K); deq , equivalent diameter, m; H, plate width, m; h, height of crimp, 

m; K, heat conduction coefficient, W/(m 2. K); L, length of plate, m; l, step of corrugated plate, m; M, number of 
divisions on computational grid along y; N, number of divisions on computational grid along x; P, pressure, Pa; Q, 
fluid flow rate, ma/sec; R, radius of curvature along S-like crimp, m; V, fluid velocity, m/sec; Vo, fluid velocity at 

the inlet of heat exchanger channel, m/sec; x, transverse coordinate; y, longitudinal coordinate; Re = Vpdeq//U, 

Reynolds number; Re o = V0pdeq//t, Reynolds number at the inlet of channel; Pr -/~c/2n, Prandtl number; a, heat 
transfer coefficient, W/(m 2. K) ; cSpl, plate thickness, m; )l, thermal conductivity coefficient, W/(m.  K) ; ~o, angle of 

inclination of crimp to the central axis of the plate, deg; g0, angle of inclination of crimp at the inlet and outlet of 

12 



channel, deg;/~, viscosity, Pa.sec; p, density, kg/m3; ~, resistance coefficient. Indices: x, y, value of quantity along 
direction of respective coordinate; pl, plate; fl, fluid; 1, value for inlet-outlet section; 2, value for main field of plate. 
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